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Abstract

The dynamics of a two-member open frame structure undergoing both in- and out-of-plane motion is
examined. The frames are modelled using the Euler–Bernoulli beam theory and are further generalized by
permitting an arbitrary angle between the beams and the attachment of a payload at the end of the second
beam. The equations of motion are derived using Hamilton’s principle and the orthogonality conditions are
presented. It is shown that the in- and out-of-plane motions can be decoupled by including the axial
deformation components in the assumed displacement fields. The natural frequencies of the system and the
contribution of each member into the system potential energy are examined via numerical examples.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Frame structures can be categorized as closed or open [1]. Closed frames are frames formed by
chains of beams in which both ends are fixed (e.g., Refs. [2–10]). The simplest example of a closed
frame is a three-beam member portal frame, (e.g., Refs. [5–10]). Open frames are chains of beams
that have one end fixed and the other end free (e.g., Refs. [1,11–14]). This paper is concerned with
open frame structures. While the most common focus of frame analysis is civil engineering
structures, the kind of structure being considered here has broader instances of application such as
space-based antenna structures and electrical or electronic components operating in severe
dynamic environments such as that might be found in a rocket launch.
The dynamics of two-member open frame structure which comprises a cantilever beam with a

second beam attached to its free end has been considered by Bang [13], Oguamanam et al. [1] and
G .urg .oze [14]. Bang [13] and G .urg .oze [14] examine L-shaped configurations without a tip mass
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while Oguamanam et al. [1] investigate configurations with arbitrary inclination angles with or
without a tip mass. Oguamanam et al. [1] define an angle of inclination measured from the
undeformed axis of the fixed beam (the first beam) to the undeformed axis of the beam with the
free end (the second or distal beam). They provide analytical expressions for the frequency (or
characteristic) equation, the mode shapes, and the orthogonality conditions for the case of planar
motion of the frame. In addition to the study being limited to in-plane motion, axial deformation
was ignored.
The advantages and disadvantages of analytical solutions for L-shaped structures versus finite-

dimensional approximations solutions have been presented by Bang [13]. Oguamanam et al. [1]
further highlight the advantages of the analytical solution over the finite element method (FEM)
using specific examples. In particular, a 60-degrees-of-freedom FEM model is used to obtain
accurate results for the first five natural frequencies. The disadvantage of using this model in a
control system is stressed.
This study extends the work by Oguamanam et al. [1] by relaxing the restrictions on the motion

of the structure. The formulation technique used in that work is cumbersome in light of the
relaxation introduced here. Hence a substructure approach is adopted. The in- and out-of-plane
motions uncouple and the system reduces to solving two sets of governing equations of motion.
Neither the analytical expression for the frequency equation nor the analytical expressions for the
mode shapes are included in the paper because of their extreme length and complexity.
Nevertheless, the components of the matrices that lead to the frequency equations and expressions
for the mode shapes, for both the in- and out-of-plane motions, are presented. The orthogonality
conditions are also included.
Numerical simulations are performed to examine the effects of: the ratio of the lengths of the

beams, the ratio of the mass at the tip to the mass of the first beam, and the orientation angle on
the natural frequencies. The contribution of each member to the system potential energy is also
investigated.

2. Equations of motion

A global reference frame is attached at the base of the structure and a non-inertial frame is
attached at the joint as depicted in Fig. 1. The unit vectors along the x1-, y1-, and z1-axis of the
fixed inertial frameFa are, respectively, defined as a1; a2 and a3: Similarly, the unit vectors of the
body fixed frameFb are b1; b2 and b3 and they correspond to the x2-, y2-, and z2-axis of the non-
inertial frame Fb which has its origin at the junction of the two beam segments.
The assumed displacement field for the ith beam is given by

%ui ¼ ui � zi

@wi

@xi

� yi

@vi

@xi

; %v ¼ vi � zici; and %wi ¼ wi þ yici: ð1Þ

The system kinetic energy T is composed of three components, the contributions from the
beams and the contribution of the tip mass (modelled as a point mass), so that

T ¼ T1 þ T2 þ Tt; ð2Þ
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where

Ti ¼ 1
2
riAi

Z Li

0

ð ’u2i þ ’v2i þ ’w2i Þ dxi þ 1
2
riJi

Z Li

0

’c2i dxi for i ¼ 1; 2 ð3Þ

(rotatory inertia has been ignored) and

Tt ¼ 1
2

mtð ’u22ðL2; tÞ þ ’v22ðL2; tÞ þ ’w22ðL2; tÞÞ: ð4Þ

The system potential energy U is composed of a contribution from each beam segment and is
given by

U ¼ U1 þ U2; ð5Þ

where

Ui ¼
1

2

Z Li

0

EiAi

@ui

@xi

� �2
dxi þ

1

2

Z Li

0

EiI
ðiÞ
yy

@2wi

@x2i

� �2
dxi

þ
1

2

Z Li

0

EiI
ðiÞ
zz

@2vi

@x2i

� �2
dxi þ

1

2

Z Li

0

GiJi

@ci

@xi

� �2
dx2 for i ¼ 1; 2: ð6Þ

Using T and U in Hamilton’s principle and taking variations over the free variables ui; vi; wi;
and ci will yield the governing equations of motion. The derivation will assume a cantilever frame
where the end corresponding to x1 ¼ 0 is clamped such that the forced boundary conditions

Fig. 1. Deformed schematic of the system.
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will be

u1ð0; tÞ ¼ 0; c1ð0; tÞ ¼ 0; ð7Þ

v1ð0; tÞ ¼ 0; w1ð0; tÞ ¼ 0; ð8Þ

v01ð0; tÞ ¼ 0; w0
1ð0; tÞ ¼ 0: ð9Þ

During the variation process it is necessary to make use of the geometric compatibility conditions
at x1 ¼ L1 and x2 ¼ 0; i.e.

u1ðL1; tÞ ¼ u2ð0; tÞ cosðyÞ � w2ð0; tÞ sinðyÞ; c1ðL1; tÞ ¼ c2ð0; tÞ cosðyÞ � v02ð0; tÞ sinðyÞ; ð10Þ

v1ðL1; tÞ ¼ v2ð0; tÞ; v01ðL1; tÞ ¼ c2ð0; tÞ sinðyÞ þ v02ð0; tÞ cosðyÞ; ð11Þ

w1ðL1; tÞ ¼ u2ð0; tÞ sinðyÞ þ w2ð0; tÞ cosðyÞ; w0
1ðL1; tÞ ¼ w0

2ð0; tÞ: ð12Þ

Subsequently, the governing equations of motion are found to be, for i ¼ 1; 2;

riAi .ui � EiAi
@2ui

@x2i
¼ 0; riAi .vi þ EiI

ðiÞ
zz

@4vi

@x4i
¼ 0;

riAi .wi þ EiI
ðiÞ
yy

@4wi

@x4i
¼ 0; riAi

.ci � GiJi
@2ci

@x2i
¼ 0; ð13Þ

with the following additional force and moment compatibility conditions at ðx1 ¼ L1; x2 ¼ 0Þ:

E1I
ð1Þ
yy w000

1 ðL1; tÞ sinðyÞ � E1A1u
0
1ðL1; tÞ cosðyÞ þ E2A2u

0
2ð0; tÞ ¼ 0; ð14Þ

E1I
ð1Þ
zz v0001 ðL1; tÞ � E2I

ð2Þ
zz v0002 ð0; tÞ ¼ 0; ð15Þ

E1I
ð1Þ
yy w000

1 ðL1; tÞ cosðyÞ þ E1A1u
0
1ðL1; tÞ sinðyÞ � E2I

ð2Þ
yy w000

2 ð0; tÞ ¼ 0; ð16Þ

E1I
ð1Þ
zz v001ðL1; tÞ sinðyÞ þ G1J1c

0
1ðL1; tÞ cosðyÞ � G2J2c

0
2ð0; tÞ ¼ 0; ð17Þ

E1I
ð1Þ
zz v001ðL1; tÞ cosðyÞ � G1J1c

0
1ðL1; tÞ sinðyÞ � E2I

ð2Þ
zz v002ð0; tÞ ¼ 0; ð18Þ

E1I
ð1Þ
yy w00

1ðL1; tÞ � E2I
ð2Þ
yy w00

2ð0; tÞ ¼ 0: ð19Þ

The natural boundary conditions at the free end (x2 ¼ L2) are

v002ðL2; tÞ ¼ 0; E2I
ð2Þ
zz v0002 ðL2; tÞ � mt .v2ðL2; tÞ ¼ 0; ð20Þ

w00
2ðL2; tÞ ¼ 0; E2I

ð2Þ
yy w000

2 ðL2; tÞ � mt .w2ðL2; tÞ ¼ 0; ð21Þ

c0
2ðL2; tÞ ¼ 0; E2A2u

0
2ðL2; tÞ þ mt .u2ðL2; tÞ ¼ 0: ð22Þ
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3. Frequency equation

To reduce the number of defining parameters the following non-dimensional variables are
introduced:

xi ¼
xi

Li

; r ¼
r2A2
r1A1

; Mt ¼
mt

r1A1L1
; L ¼

L2

L1
;

l2ui ¼
riL

2
i o

2

Ei

; l4vi ¼
riAiL

4
i o

2

EiI
ðiÞ
zz

; l4wi ¼
riAiL

4
i o

2

EiI
ðiÞ
yy

; l2ci ¼
riL

2
i o

2

Gi

;

s ¼
E2A2

E1A1
; Z ¼

G2J2

G1J1
; nvi ¼

I ðiÞzz

AiL
2
i

; nwi ¼
I ðiÞyy

AiL
2
i

; wi ¼
EiI

ðiÞ
zz

GiJi

: ð23Þ

By assuming a separable solution in the form ði ¼ 1; 2Þ

uiðxi; tÞ ¼ LiUiðxiÞe
jot; viðxi; tÞ ¼ LiViðxiÞe

jot;

wiðxi; tÞ ¼ LiWiðxiÞe
jot; ciðxi; tÞ ¼ CiðxiÞe

jot; ð24Þ

the equations of motion can be written as ði ¼ 1; 2Þ

U 00
i þ l2uiUi ¼ 0; ð25Þ

V 0000
i � l4viVi ¼ 0; ð26Þ

W 0000
i � l4wiWi ¼ 0; ð27Þ

C00
i þ l2ciCi ¼ 0: ð28Þ

In light of the non-dimensionalization and the separation of variables, the boundary conditions
can be expressed as

U1ð0Þ ¼ 0; V1ð0Þ ¼ 0; W1ð0Þ ¼ 0; ð29Þ

Cð0Þ ¼ 0; V 0
1ð0Þ ¼ 0; W 0

1ð0Þ ¼ 0; ð30Þ

V 00
2 ð1Þ ¼ 0; W 00

2 ð1Þ ¼ 0; C0
2ð1Þ ¼ 0; ð31Þ

rLU 0
2ð1Þ � Mtl

2
u2U2ð1Þ ¼ 0; rLV 000

2 ð1Þ þ Mtl
4
v2V2ð1Þ ¼ 0;

rLW 000
2 ð1Þ þ Mtl

4
w2W2ð1Þ ¼ 0 ð32Þ

and the geometric compatibility equations can be expressed as

U1ð1Þ � LU2ð0Þ cosðyÞ þ LW2ð0Þ sinðyÞ ¼ 0; ð33Þ

V1ð1Þ � LV2ð0Þ ¼ 0; ð34Þ

W1ð1Þ � LU2ð0Þ sinðyÞ � LW2ð0Þ cosðyÞ ¼ 0; ð35Þ

C1ð1Þ �C2ð0Þ cosðyÞ þ V 0
2ð0Þ sinðyÞ ¼ 0; ð36Þ
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V 0
1ð1Þ �C2ð0Þ sinðyÞ � V 0

2ð0Þ cosðyÞ ¼ 0; ð37Þ

W 0
1ð1Þ � W 0

2ð0Þ ¼ 0; ð38Þ

nw1W
000
1 ð1Þ sinðyÞ � U 0

1ð1Þ cosðyÞ þ sU 0
2ð0Þ ¼ 0; ð39Þ

nv1V
000
1 ð1Þ � snv2V

000
2 ð0Þ ¼ 0; ð40Þ

nw1W
000
1 ð1Þ cosðyÞ þ U 0

1ð1Þ sinðyÞ � snw2W
000
2 ð0Þ ¼ 0; ð41Þ

w1LV 00
1 ð1Þ sinðyÞ þ LC0

1ð1Þ cosðyÞ � ZC0
2ð0Þ ¼ 0; ð42Þ

w1LV 00
1 ð1Þ cosðyÞ � LC0

1ð1Þ sinðyÞ � w2ZV 00
2 ð0Þ ¼ 0; ð43Þ

nw1W
00
1 ð1Þ � snw2LW 00

2 ð0Þ ¼ 0: ð44Þ

The general solutions to the equations of motion (25)–(28) are

UiðxiÞ ¼ B
ðiÞ
1 cosðluixiÞ þ B

ðiÞ
2 sinðluixiÞ; ð45Þ

ViðxiÞ ¼ C
ðiÞ
1 sinðlvixiÞ þ C

ðiÞ
2 cosðlvixiÞ þ C

ðiÞ
3 sinhðlvixiÞ þ C

ðiÞ
4 coshðlvixiÞ; ð46Þ

WiðxiÞ ¼ D
ðiÞ
1 sinðlwixiÞ þ D

ðiÞ
2 cosðlwixiÞ þ D

ðiÞ
3 sinhðlwixiÞ þ D

ðiÞ
4 coshðlwixiÞ ð47Þ

and

CiðxiÞ ¼ F
ðiÞ
1 cosðlcixiÞ þ F

ðiÞ
2 sinðlcixiÞ; ð48Þ

respectively.
From Eqs. (29)–(30) the following may be deduced:

B
ð1Þ
1 ¼ 0; C

ð1Þ
2 ¼ �C

ð1Þ
4 ; C

ð1Þ
1 ¼ �C

ð1Þ
3 ;

F
ð1Þ
1 ¼ 0; D

ð1Þ
2 ¼ �D

ð1Þ
4 ; D

ð1Þ
1 ¼ �D

ð1Þ
3 ; ð49Þ

hence

U1ðx1Þ ¼ B
ð1Þ
2 sinðlu1x1Þ; ð50Þ

V1ðx1Þ ¼ C
ð1Þ
1 ðsinðlv1x1Þ � sinhðlv1x1ÞÞ þ C

ð1Þ
2 ðcosðlv1x1Þ � coshðlv1x1ÞÞ: ð51Þ

W1ðx1Þ ¼ D
ð1Þ
1 ðsinðlw1x1Þ � sinhðlw1x1ÞÞ þ D

ð1Þ
2 ðcosðlw1x1Þ � coshðlw1x1ÞÞ; ð52Þ

C1ðx1Þ ¼ F
ð1Þ
2 sinðlc1x1Þ: ð53Þ

Eqs. (50) and (53) and the corresponding equations for the second beam (obtained from
Eqs. (45)–(48) with i ¼ 2) are substituted into the remaining boundary conditions (i.e., Eqs. (31)–
(44)), and after some algebra yield 18 homogeneous equations which are linear in the unknown
coefficients of integration. These equations can be expressed in matrix format as

½A�18	18fqg18	1 ¼ f0g18	1; ð54Þ
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where

fqg ¼ ½Bð1Þ
2 ;Cð1Þ

1 ;Cð1Þ
2 ;Dð1Þ

1 ;Dð1Þ
2 ;F ð1Þ

2 ;Bð2Þ
1 ;Bð2Þ

2 ;Cð2Þ
1 ;

C
ð2Þ
2 ;Cð2Þ

3 ;Cð2Þ
4 ;Dð2Þ

1 ;Dð2Þ
2 ;Dð2Þ

3 ;Dð2Þ
4 ;F ð2Þ

1 ;F ð2Þ
2 �T:

The non-dimensional equations of motion (25)–(28) and the boundary conditions (29)–(32)
show that the in- and out-of-plane motions are uncoupled. Therefore, the matrix A and vector q
can be partitioned as

½AI � 0

0 ½AO�

" #
qI

qO

( )
; ð55Þ

where the AI and qI refer to the in-plane components and AO and qO refer to the out-of-plane
components, respectively. The vector component for the in-plane motion are

fqIg ¼ ½Bð1Þ
2 ;Dð1Þ

1 ;Dð1Þ
2 ;Bð2Þ

1 ;Bð2Þ
2 ;Dð2Þ

1 ;Dð2Þ
2 ;Dð2Þ

3 ;Dð2Þ
4 �T

and for the out-of-plane motion are

fqOg ¼ ½Cð1Þ
1 ;Cð1Þ

2 ;F ð1Þ
2 ;Cð2Þ

1 ;Cð2Þ
2 ;Cð2Þ

3 ;Cð2Þ
4 ;F ð2Þ

1 ;F ð2Þ
2 �T:

The entries for the matrices AI and AO are listed in Appendix A.
The uncoupling of the in-plane and the out-of-plane motions is realized because of the inclusion

of the axial deformation components in the initial assumed displacement field, Eqs. (1). Given that
the in- and out-of-plane motions are uncoupled, the natural frequencies of the system are
determined by independently solving the characteristic equation that results from AI and AO:
The explicit expression for the characteristic equation for the system in in-plane motion has

previously been presented by Oguamanam et al. [1]. The corresponding expressions for the in-
plane motion mode shapes were also presented. Axial effects were, however, ignored. The
characteristic equation for the in-plane motion is not provided here because the inclusion of axial
deformation complicates the expression to such an extent that nothing can be deduced with ease
or certainty. However, the examples shown in the work presented by Alexandropoulos et al. [2],
Kounadis and Meskouris [3], and Sophianopoulos and Kounadis [4] clearly show that, in closed
frames, the contribution of the axial deflections to the mode shapes is substantial and there is no
reason to believe that this will be different for the open frames considered here. The same
argument holds for the out-of-plane motion.

4. Orthogonality conditions

The orthogonality conditions are derived using the equations of motion (13), the boundary
conditions (7) and (20)–(22), and the compatibility conditions (10)–(12) and (14)–(19). The
resulting expression for the in-plane motion can be expressed as

mtL
2
2ðU2ið1ÞU2jð1Þ þ W2ið1ÞW2jð1ÞÞ þ

X2
k¼1

rkAkL3k

Z 1

0

ðUkiUkj þ WkiWkjÞ dxk ¼ 0 ð56Þ
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and that for the out-of-plane motion may be written as

mtL
2
2V2ið1ÞV2jð1Þ þ

X2
k¼1

rkLk

Z 1

0

ðAkL2kVkiVkj þ JkCkiCkjÞ dxk ¼ 0: ð57Þ

5. Numerical examples

The following examples have been chosen with several objectives in mind. The first is simply to
confirm the formulation by making comparison to previous results. The second is to illustrate the
effect that changing the relative lengths of the beams, while maintaining a constant system mass,
has on the frequency behavior of the system. The third is to explore the effect that changing the
size of the tip mass has on the frequency behavior of the system for a fixed value of L:

5.1. Example 1

The results presented in this example are meant to confirm both the formulation and the
numerical results that arise from the formulation. Figs. 2 and 3 show the in- and out-of-plane
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Fig. 2. In-plane modal frequencies versus M and y: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, and (e) Mode 5.
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frequencies, respectively, obtained when the material and geometry parameters used first by Bang
[13] and subsequently by Oguamanam et al. [1] are used in the present formulation. It should be
noted that these particular values are representative of an orbiting antenna structure and are not
intended to be representative of Earth-based engineering structures. As mentioned previously, the
inclusion of the axial deflection allows the in- and out-of-plane modes to uncouple. Although they
are uncoupled, it is observed that when y ¼ 0 and p there are repeated frequencies where the in-
and out-of-plane values are equal. The repeated values occur because the assumed geometry is a
beam with equal moments of inertia about both principle cross-sectional axes and in these two
configurations of y repeated frequencies should be observed. For any given angle y and tip-mass
value Mt the in-plane frequency is always less than the corresponding (i.e., first, second, third,
etc.) out-of-plane frequency. The data presented in Fig. 2 agree perfectly with those obtained from
the strictly planar formulation [1]. Comparison of these two figures shows that, for the most part,
there are no large differences in the magnitudes of the frequencies (in plane as compared to out of
plane) nor in their behavior with changes in the magnitude of the tip mass.

5.2. Example 2

In this example, the material parameters have been chosen to correspond to those of aluminum,
as given in Table 1 with the geometry of the two beams still implicitly given by the data used in
Example 1.
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Fig. 3. Out-of-plane modal frequencies versusM and y: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, and (e) Mode 5.
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The effect of varying the relative lengths of the two beams, while conserving total system mass
and in the absence of a tip mass, is presented in Figs. 4 and 5. Fig. 4 shows the behavior of the
frequencies associated with the in-plane modes and Fig. 5 provides the corresponding information

Table 1

Material properties and non-dimensional parameters

r1 2770 kg=m3

r2 2770 kg=m3

r 1

r1A1 4:5	 10�3 kg=m1

r2A2 6:0	 10�3 kg=m1

E1 70 GPa

E2 70 GPa

E1Iyy1 2:67	 10�2 Nm2

E1Izz1 2:67	 10�2 Nm2

E2Iyy2 1:47	 10�2 Nm2

E2Izz2 1:47	 10�2 Nm2

G1 30 GPa

G2 30 GPa
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Fig. 4. In-plane modal frequencies versus L and y: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, and (e) Mode 5.
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for the out-of-plane modes. As in the first example, both sets of figures are similar in terms of
frequency magnitudes and general shape of the surfaces. As expected, when y ¼ 0 and p the in-
and out-of-plane frequencies are identical. The in-plane frequencies are slightly higher than the
out-of-plane frequencies for a given y–L pair. The difference is greatest for large values of L and
actually reverses itself for small values of L when yEp=4: With respect to the first frequency in
each configuration it may be observed that the configurations with the largest values of the first
natural frequency have L close to unity and y close to p: The lowest values of the first natural
frequency correspond to small values of both L and y:What is different, as compared to the first
example, is the non-uniform dependence of the frequencies as a function of the length ratio L: The
figures show that there are n=2 waves in the L direction for the nth frequency. These waves are
more pronounced for large values of y and they have a higher instantaneous frequency for small
values of L: Examination of the frequency equation has not provided any definitive answers
regarding the reason for this behavior.
Graphical representation of the mode shapes that correspond to a sample of the cases covered

by Figs. 4 and 5 is not easy to present, nor would it be necessarily useful. For example, in [1] the
illustrated mode shapes suggest that the distal beam has very little deformation in the first mode,
and that consequently the majority of the modal strain energy is in the first beam. The validity of
this conjecture cannot be determined from the illustrated mode shapes. To obtain some intuition
about how the modal strain energy is distributed between the two beams consider Figs. 6–9. These

0 50 100 150

0
2

4
0

0.2

0.4

ThetaL

F
re

q(
H

z)

0 50 100 150

0
2

4
0

1

ThetaL

F
re

q(
H

z)
0 50 100 150

0
2

4
0

2

ThetaL

F
re

q(
H

z)

0 50 100 150

0
2

4
0

5

ThetaL
F

re
q(

H
z)

0 50 100 150

0
2

4
0

5

10

ThetaL

F
re

q(
H

z)
(a) (b)

(c)

(e)

(d)

Fig. 5. Out-of-plane modal frequencies versus L and y: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, and (e) Mode 5.
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Fig. 6. In-plane axial strain energy, first mode, no tip mass: (a) Beam 1, and (b) Beam 2.
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Fig. 7. Out-of-plane torsional strain energy, first mode, no tip mass: (a) Beam 1, and (b) Beam 2.
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Fig. 8. In-plane flexural strain energy, first mode, no tip mass: (a) Beam 1, and (b) Beam 2.
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Fig. 9. Out-of-plane flexural strain energy, first mode, no tip mass: (a) Beam 1, and (b) Beam 2.
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figures present the relative modal strain energy components as they are distributed between the
first and second beam. The relative strain energy values presented in these figures are the ratio of
the in-plane (out-of-plane) strain energy in beam one (two) divided by the total in-plane (out-of-
plane) strain energy of the system.
Fig. 6 presents the distribution of the axial part of the modal strain energy for the in-plane part

of the formulation. It is evident from the scale that very little of the total strain energy (less than
10�6%) goes toward axial deformations. The out-of-plane part of the formulation provides non-
flexural strain energy contributions for the two beams as shown in Fig. 7 where it may be observed
that the second beam contributes virtually nothing to the total strain energy but the first beam
does have a significant contribution. This is dominantly torsional strain energy and is greatest in
the first beam due to the large eccentric inertia provided by the second beam. It is clearly
illustrated in these figures that when the second beam is very short the torsional modal strain
energy becomes negligible, as would be expected.
The out-of-plane flexural strain energy contribution is illustrated in Fig. 9 where it may be

observed that the strain energy distribution between the two beams is complementary with respect
to their relative lengths L:When the second beam is short ðLE0Þ virtually all of the bending strain
energy is concentrated in the first beam and as the length of the second beam increases (i.e., L

becoming larger) the proportion of the bending strain energy in the first beam diminishes and the
portion in the second beam increases.

0 45 90 135 180

0
0.25

0.5
0

0.2

ThetaM

F
re

q(
ra

d/
s)

0 45 90 135 180

0
0.25

0.5
0

0.5

1

Theta

requency [Hz]

M

F
re

q(
ra

d/
s)

0 45 90 135 180

0
0.25

0.5
0

1

2

ThetaM

F
re

q(
ra

d/
s)

0 45 90 135 180

0
0.25

0.5
0

5

ThetaM

F
re

q(
ra

d/
s)

0 45 90 135 180

0
0.25

0.5
0

5

ThetaM

F
re

q(
ra

d/
s)

(e)

(d)(c)

(b)(a)

Fig. 10. In-plane modal frequencies versus M and y: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, and (e) Mode 5.
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5.3. Example 3

In this example, the material parameters remain the same as those used in Example 2 (Table 1)
with the geometry of the two beams still implicitly given by the data used in Example 1.
The effect of varying the magnitude of the tip-mass parameter such that 0pMtp0:5 is

investigated for the single value of L ¼ 2:215=4:249 ¼ 0:5213 that was used by Bang [13]. Fig. 10
shows the behavior of the first five natural frequencies associated with the in-plane modes and
Fig. 11 provides the corresponding information for the out-of-plane modes. As in the second
example, both sets of figures are similar in terms of frequency magnitudes and general shape of the
surfaces. The lowest frequencies correspond to small angles and large tip masses and the largest
frequencies correspond to large angles and small masses. Regardless of the value of y; the larger
the tip mass the lower the frequencies, as expected.

6. Summary

It has been shown that inclusion of the axial deformation component in the assumed
displacement field for the two beams ultimately allows the in- and out-of-plane frequency
equations to be uncoupled and solved independently. The first five frequencies, in the examples
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presented, support the expectation that they are dominated by either bending or torsion and there
is no significant axial component in them. Therefore, while its inclusion in the formulation has
provided analytical benefits the presence of the axial deformation components does not interfere
with the calculation of the dominant frequencies of the structure.
The examples demonstrate that the first in-plane mode is a bending mode with the first beam

dominating the mode for small values of L ðLo1
2
Þ with very little bending of the second beam in

that range of values of L and for all y: For larger values of L; the flexural parts of the first in-plane
mode are complementary between beam one and beam two as L and y change.
The out-of-plane modes are more dependent on L and y with the first mode exhibiting a large

torsional component in the first beam, except for very small values of L; and no significant
torsional contribution in the second beam for any L; y pair. The flexural parts of the first out-of-
plane mode do not display the same form of complementary behavior exhibited by the first in-
plane mode because of the torsional contribution present in the out-of-plane case. The bending
contribution of the first beam, in the out-of-plane case, diminishes symmetrically about y ¼ p=2
corresponding to a complementary increase in the torsional contribution in that range of angles.
The bending contribution of the second beam is most prevalent for large values of both L and y
because in this region neither the first beam nor the second beam contribute much by way of either
bending or torsion.

Appendix A. Entries of matrices AI and AO

Using the notation that

Sy ¼ sinðyÞ; Cy ¼ cosðyÞ; su1 ¼ sinðlu1Þ; cu1 ¼ cosðlu1Þ;

sw1 ¼ sinðlw1Þ; cw1 ¼ cosðlw1Þ; shw1 ¼ sinhðlw1Þ; chw1 ¼ coshðlw1Þ;

su2 ¼ sinðlu2Þ; cu2 ¼ cosðlu2Þ; sw2 ¼ sinðlw2Þ; cw2 ¼ cosðlw2Þ;

shw2 ¼ sinhðlw2Þ; chw2 ¼ coshðlw2Þ; sc1 ¼ sinðlc1Þ; cc1 ¼ cosðlc1Þ;

sv1 ¼ sinðlv1Þ; cv1 ¼ cosðlv1Þ; shv1 ¼ sinhðlv1Þ; chv1 ¼ coshðlv1Þ;

sc2 ¼ sinðlc2Þ; cc2 ¼ cosðlc2Þ; sv2 ¼ sinðlv2Þ; cv2 ¼ cosðlv2Þ;

shv2 ¼ sinhðlv2Þ; chv2 ¼ coshðlv2Þ;

the non-zero elements of the matrix AI are

AI1;1 ¼ su1; AI1;4 ¼ �LCy;

AI1;7 ¼ LSy; AI1;9 ¼ LSy;

AI2;2 ¼ sw1 � shw1; AI2;3 ¼ cw1 � chw1;

AI2;4 ¼ �LSy; AI2;7 ¼ �LCy;
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AI2;9 ¼ �LCy; AI3;2 ¼ lw1ðcw1 � chw1Þ;

AI3;3 ¼ �lw1ðsw1 þ shw1Þ; AI3;6 ¼ �lw2;

AI3;8 ¼ �lw2; AI4;1 ¼ �lu1cu1Cy;

AI4;2 ¼ �nw1l
3
w1Syðcw1 þ chw1Þ; AI4;3 ¼ nw1l

3
w1Syðsw1 � shw1Þ;

AI4;5 ¼ slu2; AI5;1 ¼ lu1cu1Sy;

AI5;2 ¼ �nw1l
3
w1Cyðcw1 þ chw1Þ; AI5;3 ¼ nw1l

3
w1Cyðsw1 � shw1Þ;

AI5;6 ¼ snw2l
3
w2; AI5;8 ¼ �snw2l

3
w2;

AI6;2 ¼ �nw1l
2
w1ðsw1 þ shw1Þ; AI6;3 ¼ �nw1l

2
w1ðcw1 þ chw1Þ;

AI6;7 ¼ Lsnw2l
2
w2; AI6;9 ¼ �Lsnw2l

2
w2;

AI7;6 ¼ �l2w2sw2; AI7;7 ¼ �l2w2cw2;

AI7;8 ¼ l2w2shw2; AI7;9 ¼ l2w2chw2;

AI8;4 ¼ �lu2ðrLsu2 þ lu2Mtcu2Þ; AI8;5 ¼ lu2ðrLcu2 � lu2Mtsu2Þ;

AI9;6 ¼ �l3w2ðrLcw2 � lw2Mtsw2Þ; AI9;7 ¼ l3w2ðrLsw2 þ lw2Mtcw2Þ;

AI9;8 ¼ l3w2ðrLchw2 þ lw2Mtshw2Þ; AI9;9 ¼ l3w2ðrLshw2 þ lw2Mtchw2Þ

and the non-zero elements of the matrix ½AO� are

AO1;1 ¼ sv1 � shv1; AO1;2 ¼ cv1 � chv1;

AO1;5 ¼ �L; AO1;7 ¼ �L;

AO2;1 ¼ lv1ðcv1 � chv1Þ; AO2;2 ¼ �lv1ðsv1 þ shv1Þ;

AO2;4 ¼ �lv2Cy; AO2;6 ¼ �lv2Cy;

AO2;8 ¼ �Sy; AO3;3 ¼ sc1;

AO3;4 ¼ lv2Sy; AO3;6 ¼ lv2Sy;

AO3;8 ¼ �Cy; AO4;1 ¼ �n1l
3
v1ðcv1 þ chv1Þ;

AO4;2 ¼ n1l
3
v1ðsv1 � shv1Þ; AO4;4 ¼ sn2l

3
v2;

AO4;6 ¼ �sn2l
3
v2; AO5;1 ¼ �Lw1l

2
v1Syðsv1 þ shv1Þ;

AO5;2 ¼ �Lw1l
2
v1Syðcv1 þ chv1Þ; AO5;3 ¼ Llc1cc1Cy;
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AO5;9 ¼ �Zlc2 ; AO6;1 ¼ �Lw1l
2
v1Cyðsv1 þ shv1Þ;

AO6;2 ¼ �Lw1l
2
v1Cyðcv1 þ chv1Þ; AO6;3 ¼ �Llc1cc1Sy;

AO6;5 ¼ Zw2l
2
v2; AO6;7 ¼ �Zw2l

2
v2;

AO7;4 ¼ �l2v2sv2; AO7;5 ¼ �l2v2cv2;

AO7;6 ¼ l2v2shv2; AO7;7 ¼ l2v2chv2;

AO8;8 ¼ �lc2sc2; AO8;9 ¼ lc2cc2;

AO9;4 ¼ �l3v2ðrLcv2 � Mtlv2sv2Þ; AO9;5 ¼ l3v2ðrLsv2 þ Mtlv2cv2Þ;

AO9;6 ¼ l3v2ðrLchv2 þ Mtlv2shv2Þ; AO9;7 ¼ l3v2ðrLshv2 þ Mtlv2chv2Þ:

Appendix B. Nomenclature

Ai cross-sectional area of the ith beam
Ei Young’s modulus of the ith beam
Gi shear modulus of the ith beam

I ðiÞyy
second moment of the area of the ith beam about yy-axis

I ðiÞzz
second moment of the area of the ith beam about zz-axis

Ji area polar moment of inertia of the ith beam
L ratio of the length of the second beam to the first beam
Li length of the ith beam
Mt non-dimensional mass of the tip mass
T system kinetic energy
U system potential energy
UiðxiÞ axial displacement eigenfunctions of the ith beam
ViðuiÞ out-of-plane displacement eigenfunctions of the ith beam
WiðuiÞ transverse displacement eigenfunctions of the ith beam
CiðuiÞ torsion eigenfunctions of the ith beam
mt mass of the tip mass
t time
uiðxi; tÞ axial displacement of the ith beam
viðxi; tÞ out-of-plane displacement of the ith beam
wiðxi; tÞ transverse displacement of the ith beam
xi co-ordinate of the ith beam
ciðxi; tÞ torsional angle of the ith beam
y orientation of the second beam relative to the first
Z ratio of the torsional stiffness of the second beam to the first beam
l
* i non-dimensional frequency of the ith beam with regard to * variable
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s ratio of extensional force of the second beam to the first beam
wi ith beam ratio of the flexural stiffness to torsional stiffness
xi non-dimensional co-ordinate of the ith beam
r ratio of the length density of the second beam to the first beam
ri volume mass density of the ith beam
n slenderness ratio
o natural frequency
’ð Þ time derivative
ð Þ0 spatial derivative
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